【Kubernetes初めの一歩】リソースざっくりまとめ
はじめに
Kubernetesを勉強していて、Kubernetesのリソースが多くどれがなんだかわからなくなるので、ざっくりまとめてみました。
unknown linkアルファベット順に並べています。
ConfigMap
機密性のない設定ファイルを定義して、Podへ提供します。
環境変数やコマンドライン引数などをコンテナから分離できます。

ConfigMap
ConfigMapは、 機密性のないデータをキーと値のペアで保存するために使用されるAPIオブジェクトです。Podは、環境変数、コマンドライン引数、またはボリューム内の設定ファイルとしてConfigMapを使用できます。 ConfigMapを使用すると、環境固有の設定をコンテナイメージから分離できるため、アプリケーションを簡単に移植できるようになります。 注意:ConfigMapは機密性や暗号化を提供しません。保存したいデータが機密情報である場合は、ConfigMapの代わりにSecretを使用するか、追加の(サードパーティー)ツールを使用してデータが非公開になるようにしてください。 動機 アプリケーションのコードとは別に設定データを設定するには、ConfigMapを使用します。 たとえば、アプリケーションを開発していて、(開発用時には)自分のコンピューター上と、(実際のトラフィックをハンドルするときは)クラウド上とで実行することを想像してみてください。あなたは、DATABASE_HOSTという名前の環境変数を使用するコードを書きます。ローカルでは、この変数をlocalhostに設定します。クラウド上では、データベースコンポーネントをクラスター内に公開するKubernetesのServiceを指すように設定します。 こうすることで、必要であればクラウド上で実行しているコンテナイメージを取得することで、ローカルでも完全に同じコードを使ってデバッグができるようになります。 ConfigMapは、大量のデータを保持するようには設計されていません。ConfigMapに保存されるデータは1MiBを超えることはできません。この制限を超える設定を保存する必要がある場合は、ボリュームのマウントを検討するか、別のデータベースまたはファイルサービスを使用することを検討してください。 ConfigMapオブジェクト ConfigMapは、他のオブジェクトが使うための設定を保存できるAPIオブジェクトです。ほとんどのKubernetesオブジェクトにspecセクションがあるのとは違い、ConfigMapにはdataおよびbinaryDataフィールドがあります。これらのフィールドは、キーとバリューのペアを値として受け入れます。dataフィールドとbinaryDataフィールドはどちらもオプションです。dataフィールドはUTF-8バイトシーケンスを含むように設計されていますが、binaryDataフィールドはバイナリデータを含むように設計されています。 ConfigMapの名前は、有効なDNSのサブドメイン名でなければなりません。 dataまたはbinaryDataフィールドの各キーは、英数字、-、_、または.で構成されている必要があります。dataに格納されているキーは、binaryDataフィールドのキーと重複することはできません。 v1.19以降、ConfigMapの定義にimmutableフィールドを追加して、イミュータブルなConfigMapを作成できます。 ConfigMapとPod ConfigMapを参照して、ConfigMap内のデータを元にしてPod内のコンテナの設定をするPodのspecを書くことができます。このとき、PodとConfigMapは同じ名前空間内に存在する必要があります。 以下に、ConfigMapの例を示します。単一の値を持つキーと、Configuration形式のデータ片のような値を持つキーがあります。 apiVersion: v1 kind: ConfigMap metadata: name: game-demo data: # プロパティーに似たキー。各キーは単純な値にマッピングされている player_initial_lives: "3" ui_properties_file_name: "user-interface.properties" # ファイルに似たキー game.properties: | enemy.types=aliens,monsters player.maximum-lives=5 user-interface.properties: | color.good=purple color.bad=yellow allow.textmode=true ConfigMapを利用してPod内のコンテナを設定する方法には、次の4種類があります。 コンテナ内のコマンドと引数 環境変数をコンテナに渡す 読み取り専用のボリューム内にファイルを追加し、アプリケーションがそのファイルを読み取る Kubernetes APIを使用してConfigMapを読み込むコードを書き、そのコードをPod内で実行する これらのさまざまな方法は、利用するデータをモデル化するのに役立ちます。最初の3つの方法では、kubeletがPodのコンテナを起動する時にConfigMapのデータを使用します。 4番目の方法では、ConfigMapとそのデータを読み込むためのコードを自分自身で書く必要があります。しかし、Kubernetes APIを直接使用するため、アプリケーションはConfigMapがいつ変更されても更新イベントを受信でき、変更が発生したときにすぐに反応できます。この手法では、Kubernetes APIに直接アクセスすることで、別の名前空間にあるConfigMapにもアクセスできます。 以下に、Podを設定するためにgame-demoから値を使用するPodの例を示します。 apiVersion: v1 kind: Pod metadata: name: configmap-demo-pod spec: containers: - name: demo image: alpine command: ["sleep", "3600"] env: # 環境変数を定義します。 - name: PLAYER_INITIAL_LIVES # ここではConfigMap内のキーの名前とは違い # 大文字が使われていることに着目してください。 valueFrom: configMapKeyRef: name: game-demo # この値を取得するConfigMap。 key: player_initial_lives # 取得するキー。 - name: UI_PROPERTIES_FILE_NAME valueFrom: configMapKeyRef: name: game-demo key: ui_properties_file_name volumeMounts: - name: config mountPath: "/config" readOnly: true volumes: # Podレベルでボリュームを設定し、Pod内のコンテナにマウントします。 - name: config configMap: # マウントしたいConfigMapの名前を指定します。 name: game-demo # ファイルとして作成するConfigMapのキーの配列 items: - key: "game.
CronJob
Cron形式で指定したスケジュールで実行されるJobです。

CronJob
FEATURE STATE: Kubernetes v1.8 [beta] CronJob は繰り返しのスケジュールによってJobを作成します。 CronJob オブジェクトとは crontab (cron table)ファイルでみられる一行のようなものです。 Cron形式で記述された指定のスケジュールの基づき、定期的にジョブが実行されます。 注意:すべてのCronJobスケジュール: 時刻はジョブが開始されたkube-controller-managerのタイムゾーンに基づいています。 コントロールプレーンがkube-controller-managerをPodもしくは素のコンテナで実行している場合、CronJobコントローラーのタイムゾーンとして、kube-controller-managerコンテナに設定されたタイムゾーンを使用します。 CronJobリソースのためのマニフェストを作成する場合、その名前が有効なDNSサブドメイン名か確認してください。 名前は52文字を超えることはできません。これはCronJobコントローラーが自動的に、与えられたジョブ名に11文字を追加し、ジョブ名の長さは最大で63文字以内という制約があるためです。 CronJob CronJobは、バックアップの実行やメール送信のような定期的であったり頻発するタスクの作成に役立ちます。 CronJobは、クラスターがアイドル状態になりそうなときにJobをスケジューリングするなど、特定の時間に個々のタスクをスケジュールすることもできます。 例 このCronJobマニフェスト例は、毎分ごとに現在の時刻とhelloメッセージを表示します。 application/job/cronjob.yaml apiVersion: batch/v1 kind: CronJob metadata: name: hello spec: schedule: "* * * * *" jobTemplate: spec: template: spec: containers: - name: hello image: busybox command: - /bin/sh - -c - date; echo Hello from the Kubernetes cluster restartPolicy: OnFailure (Running Automated Tasks with a CronJobではこの例をより詳しく説明しています。).
Deployment
ReplicaSetを管理します。
DeploymentはReplicaSetを管理することでPodを制御します。

Deployment
Deployment はPodとReplicaSetの宣言的なアップデート機能を提供します。 Deploymentにおいて 理想的な状態 を記述すると、Deploymentコントローラーは指定された頻度で現在の状態を理想的な状態に変更します。Deploymentを定義することによって、新しいReplicaSetを作成したり、既存のDeploymentを削除して新しいDeploymentで全てのリソースを適用できます。 備考:Deploymentによって作成されたReplicaSetを管理しないでください。ご自身のユースケースが以下の項目に含まれない場合、メインのKubernetesリポジトリーにIssueを作成することを検討してください。 ユースケース 以下の項目はDeploymentの典型的なユースケースです。 ReplicaSetをロールアウトするためにDeploymentの作成を行う: ReplicaSetはバックグラウンドでPodを作成します。Podの作成が完了したかどうかは、ロールアウトのステータスを確認してください。 DeploymentのPodTemplateSpecを更新することによりPodの新しい状態を宣言する: 新しいReplicaSetが作成され、Deploymentは指定された頻度で古いReplicaSetから新しいReplicaSetへのPodの移行を管理します。新しいReplicaSetはDeploymentのリビジョンを更新します。 Deploymentの現在の状態が不安定な場合、Deploymentのロールバックをする: ロールバックによる各更新作業は、Deploymentのリビジョンを更新します。 より多くの負荷をさばけるように、Deploymentをスケールアップする。 PodTemplateSpecに対する複数の修正を適用するためにDeploymentを停止(Pause)し、それを再開して新しいロールアウトを開始します。 Deploymentのステータス をロールアウトが失敗したサインとして利用する。 今後必要としない古いReplicaSetのクリーンアップ Deploymentの作成 以下はDeploymentの例です。これはnginxPodのレプリカを3つ持つReplicaSetを作成します。 controllers/nginx-deployment.yaml apiVersion: apps/v1 kind: Deployment metadata: name: nginx-deployment labels: app: nginx spec: replicas: 3 selector: matchLabels: app: nginx template: metadata: labels: app: nginx spec: containers: - name: nginx image: nginx:1.14.2 ports: - containerPort: 80 この例では、 .metadata.nameフィールドで指定されたnginx-deploymentという名前のDeploymentが作成されます。 このDeploymentは.spec.replicasフィールドで指定された通り、3つのレプリカPodを作成します。 .spec.selectorフィールドは、Deploymentが管理するPodのラベルを定義します。ここでは、Podテンプレートにて定義されたラベル(app: nginx)を選択しています。しかし、PodTemplate自体がそのルールを満たす限り、さらに洗練された方法でセレクターを指定することができます。 備考:`.spec.selector.matchLabels`フィールドはキーバリューペアのマップです。 `matchLabels`マップにおいて、{key, value}というペアは、keyというフィールドの値が"key"で、その演算子が"In"で、値の配列が"value"のみ含むような`matchExpressions`の要素と等しくなります。 `matchLabels`と`matchExpressions`の両方が設定された場合、条件に一致するには両方とも満たす必要があります。 .spec.templateフィールドは、以下のサブフィールドを持ちます。: Podは.metadata.labelsフィールドによって指定されたapp: nginxというラベルがつけられます。 PodTemplate、または.specフィールドは、Podがnginxという名前でDocker Hubにあるnginxのバージョン1.14.2が動くコンテナを1つ動かすことを示します。 1つのコンテナを作成し、.
Ingress
Serviceに対する外部からのアクセスを制御します。

Ingress
FEATURE STATE: Kubernetes v1.19 [stable] クラスター内のServiceに対する外部からのアクセス(主にHTTP)を管理するAPIオブジェクトです。 Ingressは負荷分散、SSL終端、名前ベースの仮想ホスティングの機能を提供します。 用語 簡単のために、このガイドでは次の用語を定義します。 ノード: Kubernetes内のワーカーマシンで、クラスターの一部です。 クラスター: Kubernetesによって管理されているコンテナ化されたアプリケーションを実行させるノードの集合です。この例や、多くのKubernetesによるデプロイでは、クラスター内のノードはインターネットに公開されていません。 エッジルーター: クラスターでファイアウォールのポリシーを強制するルーターです。クラウドプロバイダーが管理するゲートウェイや、物理的なハードウェアの一部である場合もあります。 クラスターネットワーク: 物理的または論理的な繋がりの集合で、Kubernetesのネットワークモデルによって、クラスター内でのコミュニケーションを司るものです。 Service: ラベルセレクターを使ったPodの集合を特定するKubernetes Serviceです。特に指定がない限り、Serviceはクラスターネットワーク内でのみ疎通可能な仮想IPを持つものとして扱われます。 Ingressとは何か Ingressはクラスター外からクラスター内ServiceへのHTTPとHTTPSのルートを公開します。トラフィックのルーティングはIngressリソース上で定義されるルールによって制御されます。 全てのトラフィックを単一のServiceに送る単純なIngressの例を示します。 図. Ingress IngressはServiceに対して、外部疎通できるURL、負荷分散トラフィック、SSL/TLS終端の機能や、名前ベースの仮想ホスティングを提供するように設定できます。Ingressコントローラーは通常はロードバランサーを使用してIngressの機能を実現しますが、エッジルーターや、追加のフロントエンドを構成してトラフィックの処理を支援することもできます。 Ingressは任意のポートやプロトコルを公開しません。HTTPやHTTPS以外のServiceをインターネットに公開する場合、Service.Type=NodePortやService.Type=LoadBalancerのServiceタイプを一般的には使用します。 Ingressを使用する上での前提条件 Ingressを提供するためにはIngressコントローラーが必要です。Ingressリソースを作成するのみでは何の効果もありません。 ingress-nginxのようなIngressコントローラーのデプロイが必要な場合があります。いくつかのIngressコントローラーの中から選択してください。 理想的には、全てのIngressコントローラーはリファレンスの仕様を満たすはずです。しかし実際には、各Ingressコントローラーは微妙に異なる動作をします。 備考:Ingressコントローラーのドキュメントを確認して、選択する際の注意点について理解してください。 Ingressリソース Ingressリソースの最小構成の例は以下のとおりです。 service/networking/minimal-ingress.yaml apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: minimal-ingress annotations: nginx.ingress.kubernetes.io/rewrite-target: / spec: ingressClassName: nginx-example rules: - http: paths: - path: /testpath pathType: Prefix backend: service: name: test port: number: 80 IngressにはapiVersion、kind、metadataやspecフィールドが必要です。Ingressオブジェクトの名前は、有効なDNSサブドメイン名である必要があります。設定ファイルに関する一般的な情報は、アプリケーションのデプロイ、コンテナの設定、リソースの管理を参照してください。Ingressでは、Ingressコントローラーに依存しているいくつかのオプションの設定をするためにアノテーションを一般的に使用します。例としては、rewrite-targetアノテーションなどがあります。Ingressコントローラーの種類が異なれば、サポートするアノテーションも異なります。サポートされているアノテーションについて学ぶためには、使用するIngressコントローラーのドキュメントを確認してください。 Ingress Specは、ロードバランサーやプロキシサーバーを設定するために必要な全ての情報を持っています。最も重要なものとして、外部からくる全てのリクエストに対して一致したルールのリストを含みます。IngressリソースはHTTP(S)トラフィックに対してのルールのみサポートしています。 ingressClassNameが省略された場合、デフォルトのIngressClassを定義する必要があります。 デフォルトのIngressClassを定義しなくても動作するIngressコントローラーがいくつかあります。例えば、Ingress-NGINXコントローラーはフラグ --watch-ingress-without-classで設定できます。ただし、下記のようにデフォルトのIngressClassを指定することを推奨します。
Job
常駐ではない、正常終了することが保証しているPodの集合です。

Jobs
Jobs represent one-off tasks that run to completion and then stop.
Namespace
Kubernetesクラスターで作成される仮想的なクラスターです。

Namespace(名前空間)
Kubernetesは、同一の物理クラスター上で複数の仮想クラスターの動作をサポートします。 この仮想クラスターをNamespaceと呼びます。 複数のNamespaceを使う時 Namespaceは、複数のチーム・プロジェクトにまたがる多くのユーザーがいる環境での使用を目的としています。 数人から数十人しかユーザーのいないクラスターに対して、あなたはNamespaceを作成したり、考える必要は全くありません。 Kubernetesが提供するNamespaceの機能が必要となった時に、Namespaceの使用を始めてください。 Namespaceは名前空間のスコープを提供します。リソース名は単一のNamespace内ではユニークである必要がありますが、Namespace全体ではその必要はありません。Namespaceは相互にネストすることはできず、各Kubernetesリソースは1つのNamespaceにのみ存在できます。 Namespaceは、複数のユーザーの間でクラスターリソースを分割する方法です。(これはリソースクォータを介して分割します。) 同じアプリケーションの異なるバージョンなど、少し違うリソースをただ分割するだけに、複数のNamespaceを使う必要はありません。 同一のNamespace内でリソースを区別するためにはラベルを使用してください。 Namespaceを利用する Namespaceの作成と削除方法はNamespaceの管理ガイドドキュメントに記載されています。 備考:プレフィックスkube-を持つNamespaceは、KubernetesシステムのNamespaceとして予約されているため利用は避けてください。 Namespaceの表示 ユーザーは、以下の方法で単一クラスター内の現在のNamespaceの一覧を表示できます。 kubectl get namespace NAME STATUS AGE default Active 1d kube-node-lease Active 1d kube-system Active 1d kube-public Active 1d Kubernetesの起動時には4つの初期Namespaceが作成されています。 default 他にNamespaceを持っていないオブジェクトのためのデフォルトNamespace kube-system Kubernetesシステムによって作成されたオブジェクトのためのNamespace kube-public このNamespaceは自動的に作成され、全てのユーザーから読み取り可能です。(認証されていないユーザーも含みます。) このNamespaceは、リソースをクラスター全体を通じてパブリックに表示・読み取り可能にするため、ほとんどクラスターによって使用される用途で予約されます。 このNamespaceのパブリックな側面は単なる慣例であり、要件ではありません。 kube-node-lease クラスターのスケールに応じたノードハートビートのパフォーマンスを向上させる各ノードに関連したLeaseオブジェクトのためのNamespace。 Namespaceの設定 現在のリクエストのNamespaceを設定するには、--namespaceフラグを使用します。 例: kubectl run nginx --image=nginx --namespace=<insert-namespace-name-here> kubectl get pods --namespace=<insert-namespace-name-here> Namespace設定の永続化 ユーザーはあるコンテキストのその後のコマンドで使うために、コンテキスト内で永続的にNamespaceを保存できます。 kubectl config set-context --current --namespace=<insert-namespace-name-here> # Validate it kubectl config view --minify | grep namespace: NamespaceとDNS ユーザーがServiceを作成するとき、Serviceは対応するDNSエントリを作成します。 このエントリは<service-name>.
Node
コンテナを配置するためのPodを実行する1つのVMまたは物理マシンです。

ノード
Kubernetesはコンテナを Node 上で実行されるPodに配置することで、ワークロードを実行します。 ノードはクラスターによりますが、1つのVMまたは物理的なマシンです。 各ノードはPodやそれを制御するコントロールプレーンを実行するのに必要なサービスを含んでいます。 通常、1つのクラスターで複数のノードを持ちます。学習用途やリソースの制限がある環境では、1ノードかもしれません。 1つのノード上のコンポーネントには、kubelet、コンテナランタイム、kube-proxyが含まれます。 管理 ノードをAPIサーバーに加えるには2つの方法があります: ノード上のkubeletが、コントロールプレーンに自己登録する。 あなた、もしくは他のユーザーが手動でNodeオブジェクトを追加する。 Nodeオブジェクトの作成、もしくはノード上のkubeletによる自己登録の後、コントロールプレーンはNodeオブジェクトが有効かチェックします。例えば、下記のjsonマニフェストでノードを作成してみましょう: { "kind": "Node", "apiVersion": "v1", "metadata": { "name": "10.240.79.157", "labels": { "name": "my-first-k8s-node" } } } Kubernetesは内部的にNodeオブジェクトを作成します。 APIサーバーに登録したkubeletがノードのmetadata.nameフィールドが一致しているか検証します。ノードが有効な場合、つまり必要なサービスがすべて実行されている場合は、Podを実行する資格があります。それ以外の場合、該当ノードが有効になるまではいかなるクラスターの活動に対しても無視されます。 備考:Kubernetesは無効なNodeのオブジェクトを保持し、それが有効になるまで検証を続けます。 ヘルスチェックを止めるためには、あなた、もしくはコントローラーが明示的にNodeを削除する必要があります。 Nodeオブジェクトの名前は有効なDNSサブドメイン名である必要があります。 ノードの自己登録 kubeletのフラグ --register-nodeがtrue(デフォルト)のとき、kubeletは自分自身をAPIサーバーに登録しようとします。これはほとんどのディストリビューションで使用されている推奨パターンです。 自己登録については、kubeletは以下のオプションを伴って起動されます: --kubeconfig - 自分自身をAPIサーバーに対して認証するための資格情報へのパス --cloud-provider - 自身に関するメタデータを読むためにクラウドプロバイダーと会話する方法 --register-node - 自身をAPIサーバーに自動的に登録 --register-with-taints - 与えられたtaintのリストでノードを登録します (カンマ区切りの <key>=<value>:<effect>)。 register-nodeがfalseの場合、このオプションは機能しません --node-ip - ノードのIPアドレス --node-labels - ノードをクラスターに登録するときに追加するLabel(NodeRestriction許可プラグインによって適用されるラベルの制限を参照) --node-status-update-frequency - kubeletがノードのステータスをマスターにPOSTする頻度の指定 ノード認証モードおよびNodeRestriction許可プラグインが有効になっている場合、kubeletは自分自身のノードリソースを作成/変更することのみ許可されています。 手動によるノード管理 クラスター管理者はkubectlを使用してNodeオブジェクトを作成および変更できます。 管理者が手動でNodeオブジェクトを作成したい場合は、kubeletフラグ --register-node = falseを設定してください。 管理者は--register-nodeの設定に関係なくNodeオブジェクトを変更することができます。 例えば、ノードにラベルを設定し、それをunschedulableとしてマークすることが含まれます。
PersistentVolume
永続ボリュームそのものを定義します。

永続ボリューム
このドキュメントではKubernetesの PersistentVolume について説明します。ボリュームを一読することをおすすめします。 概要 ストレージを管理することはインスタンスを管理することとは全くの別物です。PersistentVolumeサブシステムは、ストレージが何から提供されているか、どのように消費されているかをユーザーと管理者から抽象化するAPIを提供します。これを実現するためのPersistentVolumeとPersistentVolumeClaimという2つの新しいAPIリソースを紹介します。 PersistentVolume (PV)はストレージクラスを使って管理者もしくは動的にプロビジョニングされるクラスターのストレージの一部です。これはNodeと同じようにクラスターリソースの一部です。PVはVolumeのようなボリュームプラグインですが、PVを使う個別のPodとは独立したライフサイクルを持っています。このAPIオブジェクトはNFS、iSCSIやクラウドプロバイダー固有のストレージシステムの実装の詳細を捕捉します。 PersistentVolumeClaim (PVC)はユーザーによって要求されるストレージです。これはPodと似ています。PodはNodeリソースを消費し、PVCはPVリソースを消費します。Podは特定レベルのCPUとメモリーリソースを要求することができます。クレームは特定のサイズやアクセスモード(例えば、ReadWriteOnce、ReadOnlyMany、ReadWriteManyにマウントできます。詳しくはアクセスモードを参照してください)を要求することができます。 PersistentVolumeClaimはユーザーに抽象化されたストレージリソースの消費を許可する一方、ユーザーは色々な問題に対処するためにパフォーマンスといった様々なプロパティを持ったPersistentVolumeを必要とすることは一般的なことです。クラスター管理者はユーザーに様々なボリュームがどのように実装されているかを表に出すことなく、サイズやアクセスモードだけではない色々な点で異なった、様々なPersistentVolumeを提供できる必要があります。これらのニーズに応えるために StorageClass リソースがあります。 実例を含む詳細なチュートリアルを参照して下さい。 ボリュームと要求のライフサイクル PVはクラスター内のリソースです。PVCはこれらのリソースの要求でありまた、クレームのチェックとしても機能します。PVとPVCの相互作用はこのライフサイクルに従います。 プロビジョニング PVは静的か動的どちらかでプロビジョニングされます。 静的 クラスター管理者は多数のPVを作成します。それらはクラスターのユーザーが使うことのできる実際のストレージの詳細を保持します。それらはKubernetes APIに存在し、利用できます。 動的 ユーザーのPersistentVolumeClaimが管理者の作成したいずれの静的PVにも一致しない場合、クラスターはPVC用にボリュームを動的にプロビジョニングしようとする場合があります。 このプロビジョニングはStorageClassに基づいています。PVCはストレージクラスの要求が必要であり、管理者は動的プロビジョニングを行うためにストレージクラスの作成・設定が必要です。ストレージクラスを""にしたストレージ要求は、自身の動的プロビジョニングを事実上無効にします。 ストレージクラスに基づいたストレージの動的プロビジョニングを有効化するには、クラスター管理者がDefaultStorageClassアドミッションコントローラーをAPIサーバーで有効化する必要があります。 これは例えば、DefaultStorageClassがAPIサーバーコンポーネントの--enable-admission-pluginsフラグのコンマ区切りの順序付きリストの中に含まれているかで確認できます。 APIサーバーのコマンドラインフラグの詳細についてはkube-apiserverのドキュメントを参照してください。 バインディング ユーザは、特定のサイズのストレージとアクセスモードを指定した上でPersistentVolumeClaimを作成します(動的プロビジョニングの場合は、すでに作られています)。マスター内のコントロールループは、新しく作られるPVCをウォッチして、それにマッチするPVが見つかったときに、それらを紐付けます。PVが新しいPVC用に動的プロビジョニングされた場合、コントロールループは常にPVをそのPVCに紐付けます。そうでない場合、ユーザーは常に少なくとも要求したサイズ以上のボリュームを取得しますが、ボリュームは要求されたサイズを超えている可能性があります。一度紐付けされると、どのように紐付けられたかに関係なくPersistentVolumeClaimの紐付けは排他的(決められた特定のPVとしか結びつかない状態)になります。PVCからPVへの紐付けは、PersistentVolumeとPersistentVolumeClaim間の双方向の紐付けであるClaimRefを使用した1対1のマッピングになっています。 一致するボリュームが存在しない場合、クレームはいつまでも紐付けされないままになります。一致するボリュームが利用可能になると、クレームがバインドされます。たとえば、50GiのPVがいくつもプロビジョニングされているクラスターだとしても、100Giを要求するPVCとは一致しません。100GiのPVがクラスターに追加されると、PVCを紐付けできます。 使用 Podは要求をボリュームとして使用します。クラスターは、要求を検査して紐付けられたボリュームを見つけそのボリュームをPodにマウントします。複数のアクセスモードをサポートするボリュームの場合、ユーザーはPodのボリュームとしてクレームを使う時にどのモードを希望するかを指定します。 ユーザーがクレームを取得し、そのクレームがバインドされると、バインドされたPVは必要な限りそのユーザーに属します。ユーザーはPodをスケジュールし、PodのvolumesブロックにpersistentVolumeClaimを含めることで、バインドされたクレームのPVにアクセスします。 書式の詳細はこちらを確認して下さい。 使用中のストレージオブジェクトの保護 使用中のストレージオブジェクト保護機能の目的はデータ損失を防ぐために、Podによって実際に使用されている永続ボリュームクレーム(PVC)と、PVCにバインドされている永続ボリューム(PV)がシステムから削除されないようにすることです。 備考:PVCを使用しているPodオブジェクトが存在する場合、PVCはPodによって実際に使用されています。 ユーザーがPodによって実際に使用されているPVCを削除しても、そのPVCはすぐには削除されません。PVCの削除は、PVCがPodで使用されなくなるまで延期されます。また、管理者がPVCに紐付けられているPVを削除しても、PVはすぐには削除されません。PVがPVCに紐付けられなくなるまで、PVの削除は延期されます。 PVCの削除が保護されているかは、PVCのステータスがTerminatingになっていて、そしてFinalizersのリストにkubernetes.io/pvc-protectionが含まれているかで確認できます。 kubectl describe pvc hostpath Name: hostpath Namespace: default StorageClass: example-hostpath Status: Terminating Volume: Labels: <none> Annotations: volume.beta.kubernetes.io/storage-class=example-hostpath volume.beta.kubernetes.io/storage-provisioner=example.com/hostpath Finalizers: [kubernetes.io/pvc-protection] 同様にPVの削除が保護されているかは、PVのステータスがTerminatingになっていて、そしてFinalizersのリストにkubernetes.io/pv-protectionが含まれているかで確認できます。 kubectl describe pv task-pv-volume Name: task-pv-volume Labels: type=local Annotations: <none> Finalizers: [kubernetes.
PersistentVolumeClaim
実際に使うボリュームを要求します。

永続ボリューム
このドキュメントではKubernetesの PersistentVolume について説明します。ボリュームを一読することをおすすめします。 概要 ストレージを管理することはインスタンスを管理することとは全くの別物です。PersistentVolumeサブシステムは、ストレージが何から提供されているか、どのように消費されているかをユーザーと管理者から抽象化するAPIを提供します。これを実現するためのPersistentVolumeとPersistentVolumeClaimという2つの新しいAPIリソースを紹介します。 PersistentVolume (PV)はストレージクラスを使って管理者もしくは動的にプロビジョニングされるクラスターのストレージの一部です。これはNodeと同じようにクラスターリソースの一部です。PVはVolumeのようなボリュームプラグインですが、PVを使う個別のPodとは独立したライフサイクルを持っています。このAPIオブジェクトはNFS、iSCSIやクラウドプロバイダー固有のストレージシステムの実装の詳細を捕捉します。 PersistentVolumeClaim (PVC)はユーザーによって要求されるストレージです。これはPodと似ています。PodはNodeリソースを消費し、PVCはPVリソースを消費します。Podは特定レベルのCPUとメモリーリソースを要求することができます。クレームは特定のサイズやアクセスモード(例えば、ReadWriteOnce、ReadOnlyMany、ReadWriteManyにマウントできます。詳しくはアクセスモードを参照してください)を要求することができます。 PersistentVolumeClaimはユーザーに抽象化されたストレージリソースの消費を許可する一方、ユーザーは色々な問題に対処するためにパフォーマンスといった様々なプロパティを持ったPersistentVolumeを必要とすることは一般的なことです。クラスター管理者はユーザーに様々なボリュームがどのように実装されているかを表に出すことなく、サイズやアクセスモードだけではない色々な点で異なった、様々なPersistentVolumeを提供できる必要があります。これらのニーズに応えるために StorageClass リソースがあります。 実例を含む詳細なチュートリアルを参照して下さい。 ボリュームと要求のライフサイクル PVはクラスター内のリソースです。PVCはこれらのリソースの要求でありまた、クレームのチェックとしても機能します。PVとPVCの相互作用はこのライフサイクルに従います。 プロビジョニング PVは静的か動的どちらかでプロビジョニングされます。 静的 クラスター管理者は多数のPVを作成します。それらはクラスターのユーザーが使うことのできる実際のストレージの詳細を保持します。それらはKubernetes APIに存在し、利用できます。 動的 ユーザーのPersistentVolumeClaimが管理者の作成したいずれの静的PVにも一致しない場合、クラスターはPVC用にボリュームを動的にプロビジョニングしようとする場合があります。 このプロビジョニングはStorageClassに基づいています。PVCはストレージクラスの要求が必要であり、管理者は動的プロビジョニングを行うためにストレージクラスの作成・設定が必要です。ストレージクラスを""にしたストレージ要求は、自身の動的プロビジョニングを事実上無効にします。 ストレージクラスに基づいたストレージの動的プロビジョニングを有効化するには、クラスター管理者がDefaultStorageClassアドミッションコントローラーをAPIサーバーで有効化する必要があります。 これは例えば、DefaultStorageClassがAPIサーバーコンポーネントの--enable-admission-pluginsフラグのコンマ区切りの順序付きリストの中に含まれているかで確認できます。 APIサーバーのコマンドラインフラグの詳細についてはkube-apiserverのドキュメントを参照してください。 バインディング ユーザは、特定のサイズのストレージとアクセスモードを指定した上でPersistentVolumeClaimを作成します(動的プロビジョニングの場合は、すでに作られています)。マスター内のコントロールループは、新しく作られるPVCをウォッチして、それにマッチするPVが見つかったときに、それらを紐付けます。PVが新しいPVC用に動的プロビジョニングされた場合、コントロールループは常にPVをそのPVCに紐付けます。そうでない場合、ユーザーは常に少なくとも要求したサイズ以上のボリュームを取得しますが、ボリュームは要求されたサイズを超えている可能性があります。一度紐付けされると、どのように紐付けられたかに関係なくPersistentVolumeClaimの紐付けは排他的(決められた特定のPVとしか結びつかない状態)になります。PVCからPVへの紐付けは、PersistentVolumeとPersistentVolumeClaim間の双方向の紐付けであるClaimRefを使用した1対1のマッピングになっています。 一致するボリュームが存在しない場合、クレームはいつまでも紐付けされないままになります。一致するボリュームが利用可能になると、クレームがバインドされます。たとえば、50GiのPVがいくつもプロビジョニングされているクラスターだとしても、100Giを要求するPVCとは一致しません。100GiのPVがクラスターに追加されると、PVCを紐付けできます。 使用 Podは要求をボリュームとして使用します。クラスターは、要求を検査して紐付けられたボリュームを見つけそのボリュームをPodにマウントします。複数のアクセスモードをサポートするボリュームの場合、ユーザーはPodのボリュームとしてクレームを使う時にどのモードを希望するかを指定します。 ユーザーがクレームを取得し、そのクレームがバインドされると、バインドされたPVは必要な限りそのユーザーに属します。ユーザーはPodをスケジュールし、PodのvolumesブロックにpersistentVolumeClaimを含めることで、バインドされたクレームのPVにアクセスします。 書式の詳細はこちらを確認して下さい。 使用中のストレージオブジェクトの保護 使用中のストレージオブジェクト保護機能の目的はデータ損失を防ぐために、Podによって実際に使用されている永続ボリュームクレーム(PVC)と、PVCにバインドされている永続ボリューム(PV)がシステムから削除されないようにすることです。 備考:PVCを使用しているPodオブジェクトが存在する場合、PVCはPodによって実際に使用されています。 ユーザーがPodによって実際に使用されているPVCを削除しても、そのPVCはすぐには削除されません。PVCの削除は、PVCがPodで使用されなくなるまで延期されます。また、管理者がPVCに紐付けられているPVを削除しても、PVはすぐには削除されません。PVがPVCに紐付けられなくなるまで、PVの削除は延期されます。 PVCの削除が保護されているかは、PVCのステータスがTerminatingになっていて、そしてFinalizersのリストにkubernetes.io/pvc-protectionが含まれているかで確認できます。 kubectl describe pvc hostpath Name: hostpath Namespace: default StorageClass: example-hostpath Status: Terminating Volume: Labels: <none> Annotations: volume.beta.kubernetes.io/storage-class=example-hostpath volume.beta.kubernetes.io/storage-provisioner=example.com/hostpath Finalizers: [kubernetes.io/pvc-protection] 同様にPVの削除が保護されているかは、PVのステータスがTerminatingになっていて、そしてFinalizersのリストにkubernetes.io/pv-protectionが含まれているかで確認できます。 kubectl describe pv task-pv-volume Name: task-pv-volume Labels: type=local Annotations: <none> Finalizers: [kubernetes.
Pod
コンテナの集合体で、コンテナを実行する方法を定義します。

Pod
Podは、Kubernetes内で作成・管理できるコンピューティングの最小のデプロイ可能なユニットです。 Pod(Podという名前は、たとえばクジラの群れ(pod of whales)やえんどう豆のさや(pea pod)などの表現と同じような意味です)は、1つまたは複数のコンテナのグループであり、ストレージやネットワークの共有リソースを持ち、コンテナの実行方法に関する仕様を持っています。同じPodに含まれるリソースは、常に同じ場所で同時にスケジューリングされ、共有されたコンテキストの中で実行されます。Podはアプリケーションに特化した「論理的なホスト」をモデル化します。つまり、1つのPod内には、1つまたは複数の比較的密に結合されたアプリケーションコンテナが含まれます。クラウド外の文脈で説明すると、アプリケーションが同じ物理ホストや同じバーチャルマシンで実行されることが、クラウドアプリケーションの場合には同じ論理ホスト上で実行されることに相当します。 アプリケーションコンテナと同様に、Podでも、Podのスタートアップ時に実行されるinitコンテナを含めることができます。また、クラスターで利用できる場合には、エフェメラルコンテナを注入してデバッグすることもできます。 Podとは何か? 備考:KubernetesはDockerだけでなく複数のコンテナランタイムをサポートしていますが、Dockerが最も一般的に知られたランタイムであるため、Docker由来の用語を使ってPodを説明するのが理解の助けとなります。 Podの共有コンテキストは、Dockerコンテナを隔離するのに使われているのと同じ、Linuxのnamespaces、cgroups、場合によっては他の隔離技術の集合を用いて作られます。Podのコンテキスト内では、各アプリケーションが追加の準隔離技術を適用することもあります。 Dockerの概念を使って説明すると、Podは共有の名前空間と共有ファイルシステムのボリュームを持つDockerコンテナのグループに似ています。 Podを使用する 以下は、nginx:1.14.2イメージが実行されるコンテナからなるPodの例を記載しています。 pods/simple-pod.yaml apiVersion: v1 kind: Pod metadata: name: nginx spec: containers: - name: nginx image: nginx:1.14.2 ports: - containerPort: 80 上記のようなPodを作成するには、以下のコマンドを実行します: kubectl apply -f https://k8s.io/examples/pods/simple-pod.yaml Podは通常、直接作成されず、ワークロードリソースで作成されます。ワークロードリソースでPodを作成する方法の詳細については、Podを利用するを参照してください。 Podを管理するためのワークロードリソース 通常、たとえ単一のコンテナしか持たないシングルトンのPodだとしても、自分でPodを直接作成する必要はありません。その代わりに、DeploymentやJobなどのワークロードリソースを使用してPodを作成します。もしPodが状態を保持する必要がある場合は、StatefulSetリソースを使用することを検討してください。 Kubernetesクラスター内のPodは、主に次の2種類の方法で使われます。 単一のコンテナを稼働させるPod。「1Pod1コンテナ」構成のモデルは、Kubernetesでは最も一般的なユースケースです。このケースでは、ユーザーはPodを単一のコンテナのラッパーとして考えることができます。Kubernetesはコンテナを直接管理するのではなく、Podを管理します。 協調して稼働させる必要がある複数のコンテナを稼働させるPod。単一のPodは、密に結合してリソースを共有する必要があるような、同じ場所で稼働する複数のコンテナからなるアプリケーションをカプセル化することもできます。これらの同じ場所で稼働するコンテナ群は、単一のまとまりのあるサービスのユニットを構成します。たとえば、1つのコンテナが共有ボリュームからファイルをパブリックに配信し、別のサイドカーコンテナがそれらのファイルを更新するという構成が考えられます。Podはこれらの複数のコンテナ、ストレージリソース、一時的なネットワークIDなどを、単一のユニットとしてまとめます。 備考:複数のコンテナを同じ場所で同時に管理するように単一のPod内にグループ化するのは、比較的高度なユースケースです。このパターンを使用するのは、コンテナが密に結合しているような特定のインスタンス内でのみにするべきです。 各Podは、与えられたアプリケーションの単一のインスタンスを稼働するためのものです。もしユーザーのアプリケーションを水平にスケールさせたい場合(例: 複数インスタンスを稼働させる)、複数のPodを使うべきです。1つのPodは各インスタンスに対応しています。Kubernetesでは、これは一般的にレプリケーションと呼ばれます。レプリケーションされたPodは、通常ワークロードリソースと、それに対応するコントローラーによって、作成・管理されます。 Kubernetesがワークロードリソースとそのコントローラーを活用して、スケーラブルで自動回復するアプリケーションを実装する方法については、詳しくはPodとコントローラーを参照してください。 Podが複数のコンテナを管理する方法 Podは、まとまりの強いサービスのユニットを構成する、複数の協調する(コンテナとして実行される)プロセスをサポートするために設計されました。単一のPod内の複数のコンテナは、クラスター内の同じ物理または仮想マシン上で、自動的に同じ場所に配置・スケジューリングされます。コンテナ間では、リソースや依存関係を共有したり、お互いに通信したり、停止するときにはタイミングや方法を協調して実行できます。 たとえば、あるコンテナが共有ボリューム内のファイルを配信するウェブサーバーとして動作し、別の「サイドカー」コンテナがリモートのリソースからファイルをアップデートするような構成が考えられます。この構成を以下のダイアグラムに示します。 Podによっては、appコンテナに加えてinitコンテナを持っている場合があります。initコンテナはappコンテナが起動する前に実行・完了するコンテナです。 Podは、Podを構成する複数のコンテナに対して、ネットワークとストレージの2種類の共有リソースを提供します。 Podを利用する 通常Kubernetesでは、たとえ単一のコンテナしか持たないシングルトンのPodだとしても、個別のPodを直接作成することはめったにありません。その理由は、Podがある程度一時的で使い捨てできる存在として設計されているためです。Podが作成されると(あなたが直接作成した場合でも、コントローラーが間接的に作成した場合でも)、新しいPodはクラスター内のノード上で実行されるようにスケジューリングされます。Podは、実行が完了するか、Podオブジェクトが削除されるか、リソース不足によって強制退去されるか、ノードが停止するまで、そのノード上にとどまります。 備考:Pod内のコンテナの再起動とPodの再起動を混同しないでください。Podはプロセスではなく、コンテナが実行するための環境です。Podは削除されるまでは残り続けます。 Podオブジェクトのためのマニフェストを作成したときは、指定したPodの名前が有効なDNSサブドメイン名であることを確認してください。 Pod OS FEATURE STATE: Kubernetes v1.25 [stable] .spec.os.nameフィールドでwindowsかlinuxのいずれかを設定し、Podを実行させたいOSを指定する必要があります。Kubernetesは今のところ、この2つのOSだけサポートしています。将来的には増える可能性があります。 Kubernetes v1.32では、このフィールドに設定した値はPodのスケジューリングに影響を与えません。.spec.os.nameを設定することで、Pod OSに権限を認証することができ、バリデーションにも使用されます。kubeletが実行されているノードのOSが、指定されたPod OSと異なる場合、kubeletはPodの実行を拒否します。 Podセキュリティの標準もこのフィールドを使用し、指定したOSと関係ないポリシーの適用を回避しています。 Podとコンテナコントローラー ワークロードリソースは、複数のPodを作成・管理するために利用できます。リソースに対応するコントローラーが、複製やロールアウトを扱い、Podの障害時には自動回復を行います。たとえば、あるノードに障害が発生した場合、コントローラーはそのノードの動作が停止したことを検知し、代わりのPodを作成します。そして、スケジューラーが代わりのPodを健全なノード上に配置します。
ReplicaSet
同じ仕様のPodを複数生成、管理します。
unknown linkSecret
認証情報などの機密情報を定義し、Podから参照できるようにします。
unknown linkService
アプリケーションとして実行されているPodの集合にアクセスする経路を定義します。
unknown linkStatefulSet
データストアのような状態を保持する(ステートフルな)Podを複数生成、管理します。

StatefulSet
StatefulSetはステートフルなアプリケーションを管理するためのワークロードAPIです。 StatefulSetはPodのデプロイとスケーリングを管理し、それらのPodの順序と一意性を保証します。 Deploymentのように、StatefulSetは指定したコンテナのspecに基づいてPodを管理します。Deploymentとは異なり、StatefulSetは各Podにおいて管理が大変な同一性を維持します。これらのPodは同一のspecから作成されますが、それらは交換可能ではなく、リスケジュール処理をまたいで維持される永続的な識別子を持ちます。 ワークロードに永続性を持たせるためにストレージボリュームを使いたい場合は、解決策の1つとしてStatefulSetが利用できます。StatefulSet内の個々のPodは障害の影響を受けやすいですが、永続化したPodの識別子は既存のボリュームと障害によって置換された新しいPodの紐付けを簡単にします。 StatefulSetの使用 StatefulSetは下記の1つ以上の項目を要求するアプリケーションにおいて最適です。 安定した一意のネットワーク識別子 安定した永続ストレージ 規則的で安全なデプロイとスケーリング 規則的で自動化されたローリングアップデート 上記において安定とは、Podのスケジュール(または再スケジュール)をまたいでも永続的であることと同義です。 もしアプリケーションが安定したネットワーク識別子と規則的なデプロイや削除、スケーリングを全く要求しない場合、ユーザーはステートレスなレプリカのセットを提供するワークロードを使ってアプリケーションをデプロイするべきです。 DeploymentやReplicaSetのようなコントローラーはこのようなステートレスな要求に対して最適です。 制限事項 提供されたPodのストレージは、要求されたstorage classにもとづいてPersistentVolume Provisionerによってプロビジョンされるか、管理者によって事前にプロビジョンされなくてはなりません。 StatefulSetの削除もしくはスケールダウンをすることにより、StatefulSetに関連したボリュームは削除されません 。 これはデータ安全性のためで、関連するStatefulSetのリソース全てを自動的に削除するよりもたいてい有効です。 StatefulSetは現在、Podのネットワークアイデンティティーに責務をもつためにHeadless Serviceを要求します。ユーザーはこのServiceを作成する責任があります。 StatefulSetは、StatefulSetが削除されたときにPodの停止を行うことを保証していません。StatefulSetにおいて、規則的で安全なPodの停止を行う場合、削除のために事前にそのStatefulSetの数を0にスケールダウンさせることが可能です。 デフォルト設定のPod管理ポリシー (OrderedReady)によってローリングアップデートを行う場合、修復のための手動介入を要求するようなブロークンな状態に遷移させることが可能です。 コンポーネント 下記の例は、StatefulSetのコンポーネントのデモンストレーションとなります。 apiVersion: v1 kind: Service metadata: name: nginx labels: app: nginx spec: ports: - port: 80 name: web clusterIP: None selector: app: nginx --- apiVersion: apps/v1 kind: StatefulSet metadata: name: web spec: selector: matchLabels: app: nginx # .spec.template.metadata.labelsの値と一致する必要があります serviceName: "nginx" replicas: 3 # by default is 1 template: metadata: labels: app: nginx # .